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Abstract

Worms, self-replicating programs which infect vul-
nerable hosts on the Internet, are a major security
threat. Sophisticated worms that use precomputed
hitlists of vulnerable targets are especially hard to
contain, as they spread at rates where existing defenses
may not be able to act in a timely fashion and have
characteristics that make them more difficult to detect.
This paper proposes a new approach, called Network
Address Space Randomization (NASR), whose goal is
to harden networks specifically against hitlist worms.
The idea behind NASR is that hitlist information could
become stale if nodes are forced to change their IP ad-
dresses frequently enough. NASR slows down hitlist
worms, and could even force them to exhibit scan-
like features that makes them easier to contain at the
perimeter. We explore the design space for NASR and
present a prototype implementation as well as prelimi-
nary experiments analyzing the effectiveness of the ap-
proach.

1 Introduction

Worms and viruses are widely regarded to be one
of the major security threats facing the Internet today.
Incidents such as Code Red[1, 15] and Slammer[3]
have clearly demonstrated that worms can infect tens
of thousands of computers in less than half an hour, a
timescale where human intervention is unlikely to be
feasible. More recent research studies have estimated
that worms can infect as many as a million hosts in
less than two seconds [20, 21, 22]. Unlike most of the
currently known worms that find their victims by tar-
geting random IP addresses in search for vulnerable
hosts, these extremely fast worms rely on hitlists, pre-
computed lists of vulnerable targets, in order to spread
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efficiently.

The threat of worms and the speed at which they can
spread have motivated research in automated worm de-
tection and defense mechanisms. For instance, sev-
eral recent studies have focused on detecting scanning
worms. Techniques such as [25, 12, 24,17, 19, 23] de-
tect scanning activity and either block or throttle fur-
ther connection attempts. These techniques are un-
likely to be effective against hitlist worms, as they
do not exhibit the failed-connection feature that scan
detection is looking for. To improve the effective-
ness of worm detection, several distributed, cooper-
ative defense and early-warning systems have been
proposed, with the goal of aggregating scanning or
other indications of worm activity from different sites
[26, 16, 8, 27]. Distributed detection is usually slower,
as it requires data collection and correlation among
different sites, and is unlikely to be able to detect an
attack at the estimated timescales of hitlist worms.

This paper considers the question of whether it is
possible to defend against hitlist worms. We first ex-
amine strategies for building hitlists and how effec-
tive these strategies can be. We observe that hitlists
tend to decay naturally for various reasons, as hosts
get disconnected or change addresses, and applications
are started and shut down. A rapidly decaying hitlist
is likely to decrease the spread rate of a worm. It
may also increase the number of unsuccessful connec-
tions it initiates, and may thus increase exposure of the
worm to scan-detection methods.

Starting with this observation about hitlist decay, it
is natural to ask if it is possible to intentionally induce
hitlist decay, and we examine the possibility of achiev-
ing this through network address space randomization
(NASR). This technique is inspired by instruction ad-
dress randomization that has been proposed to protect
against code injection attacks at the compiler level[13].
It is also similar in principle to the “IP hopping” mech-
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anism presented in [9], whose goal is to confuse tar-
geted attacks. In this paper, we apply the same basic
idea to the specific context of defending against hitlist
worms. In its simplest form, network address space
randomization can be provided by adapting dynamic
IP address allocation services such as DHCP* to force
more frequent address changes. This simple approach
may be able to protect enabled networks against hitlist
worms, and, if deployed at a large enough scale, may
be able to significantly hamper their spread.

We must emphasize that, like most (if not all) other
worm containment proposals, network address space
randomization is only a partial solution to the worm
containment problem. The basic advantage of our ap-
proach is the ability to slow down, rather than com-
pletely squash hitlist-based worm epidemics. Slowing
down the fastest known method propagation is impor-
tant as it may allow more time for other, possibly coop-
erative defenses to kick in. Furthermore, we must note
that our analysis does not invalidate the worst-case es-
timates provided in previous work, nor is our goal to
play down the threat posed by such worms. Rather, we
show that network address space randomization can
provide a useful improvement at reasonable cost, for
certain types of attacks, and is thus worth considering
as part of a broader worm defense portfolio.

The rest of this paper is organized as follows. In
Section 2 we provide some background on worms,
hitlists, and relevant detection mechanisms. In Section
3 we explore in more detail the idea of network ad-
dress space randomization, and outline a randomized
DHCP server implementation. In Section 4 we analyze
various hitlist generation strategies, and present mea-
surements exploring the properties of a small subset of
the IP address space. In Section 4 we present a sim-
ulation study analyzing the effectiveness of network
address space randomization in terms of how much it
would slow down a hitlist worm and how it would ex-
pose such a worm to scan detection. We summarize
our results and conclude in Section 5.

LAnother known address allocation service is boot p, but it
allocates addresses semi-permanently, without any mechanism for
renewing the allocation, and is thus not usable for our purposes.

L
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2 Background

For the purpose of placing our work in context, we
first give a brief overview of what is known about
worms, with some emphasis on hitlist worms, and
present a summary of proposals for defending against
worms and how they relate to hitlist worms which are
the focus of this paper.

2.1 Worms

Computer viruses have been studied extensively
over the last couple of decades. Cohen was the first
to define and describe computer viruses in their present
form. In [11], he gave a theoretical basis for the spread
of computer viruses. The strong analogy between bio-
logical and computer viruses led Kephart et al. [14] to
investigate the propagation of computer viruses based
on epidemiological models. They extend the stan-
dard epidemiological model by placing it on a directed
graph, and use a combination of analysis and simula-
tion to study its behavior. They conclude that if the
rate at which defense mechanisms detect and remove
viruses is sufficiently high relative to the rate at which
viruses spread, it is possible to prevent widespread
virus propagation.

The Code Red worm [1] was analyzed extensively
in [28]. The authors conclude that even though epi-
demic models can be used to study the behavior of In-
ternet worms, they are not accurate enough because
they cannot capture some specific properties of the en-
vironment these operate in: the effect of human coun-
termeasures against worm spreading (i.e., patching, fil-
tering, disconnecting, etc.), and the slowing down of
the worm infection rate due to the worm’s impact on
Internet traffic and infrastructure. They derive a new
general Internet worm model called two-factor worm
model, which they then validate in simulations that
match the observed Code Red data available to them.
Their analysis seems also to be independently sup-
ported by the data on Code Red propagation in [15].

A similar analysis on the SQL “Slammer” (or Sap-
phire) worm [2] can be found in [3]. Sapphire, the
fastest worm to day, was able to infect more than
70,000 victim computers in less than 15 minutes.

The Blaster/Welchia epidemic is an interesting ex-
ample of a “vigilante” worm (Welchia) causing more
trouble than the original outbreak (Blaster). A “vigi-
lante” worm attempts to clean-up another worm by us-
ing the same vulnerability. However, the very notion
of “vigilante” worms is rendered useless if worms im-
mediately disable the vulnerability after compromis-



ing a machine.

The Witty worm [18] is of interest for several rea-
sons. First, it was the first widely propagated Internet
worm to carry a destructive payload. Second, Witty
was started in an organized manner with an order of
magnitude more ground-zero hosts than any previous
worm and also began to spread as early as only one
day after the vulnerability was publicized, which is an
indication that the worm authors had already prepared
all the worm infrastructure, including the ground-zero
hosts and the replication mechanisms, and were only
waiting for an exploit to become available in order
to launch the worm. Finally, Witty spread through a
population almost an order of magnitude smaller than
that of previous worms, showing that a hitlist is not
required even for targeting small populations.

All these worms use (random) scanning to deter-
mine their victims, by using a random number gen-
erator to select addresses from the entire IP address
space. Although some worms chose their next target
uniformly among all the available IP addresses, other
worms seemed to prefer local addresses over distant
ones, so as to spread the worm to as many local com-
puters as possible. Once inside an organization, these
worms make sure that they will infect several of the or-
ganization’s computers before trying to infect any out-
side hosts.

2.2 Hitlists

Instead of attempting to infect random targets, a
worm could first determine a large vulnerable popu-
lation before it starts spreading. The worm creator
can assemble a list of potentially vulnerable machines
prior to releasing the worm, for example, through a
slow port scan. The list of known vulnerable hosts
is called a hitlist. Using hitlists, worms do not need
to waste time scanning for potential targets during the
time of the attack, and will not generate as many un-
successful connections as when scanning randomly.
This allows them to spread much faster, and it also
makes them less visible to scan-based worm detec-
tion tools. A hitlist can be either a collection of IP
addresses, a set of DNS names or a set of Distributed
Hash Table identities (for infecting DHT systems irrel-
evantly of the network infrastructure).

Hitlist worms have not been observed in the wild,
perhaps because the co-evolution of worms and de-
fenses has not reached that stage yet: they are not
currently necessary for a successful worm epidemic,
since neither scan-blocking nor distributed detection
systems are widely deployed yet. However, hitlists

are certainly feasible today and worm creators are very
likely to use them in the future.

Hitlist worms have attracted some attention lately,
as they are easy to model off-line [21, 20]. In this
context, several hitlist construction methods have been
outlined: random scanning, DNS searches, web crawl-
ing, public surveys and indexes, as well as monitoring
of control messages in peer-to-peer networks.

There are many ways for building hitlists. Random
scanning can be used to compile a list of IP addresses
that respond to active probing. Since the addresses
will not be (ab)used immediately, the worm author can
use so-called stealth, low rate, scanning techniques to
make the scan pass unnoticed. On the other hand, if the
duration of the low-rate scanning phase is very long,
some IP addresses will eventually expire.

Hitlists of Web servers can be assembled by sending
queries to search engines and by harvesting Web server
names off the replies. Similar single-word queries can
also be sent to DNS servers in order to validate web
server names and find their IP addresses. Interestingly
enough, these types of scans can be used to easily cre-
ate large lists of web servers, and are very likely to go
unnoticed.

However, any form of active scanning, probing, or
searching, has the potential risk of being detected.
This gives special appeal to passive techniques, such
as those based on peer-to-peer networks. Such net-
works typically advertise many of their nodes and this
information can be collected by just observing the traf-
fic that is routed through a peer. The creation of the
hitlist does not require any active operation from the
peer-to-peer node and therefore cannot raise suspicion
easily.

2.3  Worm defenses

We discuss some recent proposals for defending
against worms and whether they could be effective
against hitlist worms.

Approaches such as the one by Wu et al. [25]
attempt to detect worms by monitoring unsolicited
probes to unassigned IP addresses (“dark space™) or
inactive ports. Worms can be detected by observing
statistical properties of scan traffic, such as the num-
ber of source/destination addresses and the volume of
the captured traffic. By measuring the increase on the
number of source addresses seen in a unit of time, it
is possible to infer the existence of a new worm when
as little as 4% of the vulnerable machines have been
infected.

An approach for isolating infected nodes inside an



enterprise network is discussed in [19, 12]. The au-
thors show that as little as 4 probes may be suffi-
cient in detecting a new port-scanning worm. Weaver
et al. [23] describe a practical approximation algo-
rithm for quickly detecting scanning activity that can
be efficiently implemented in hardware. Schechter
et al. [17] use a combination of reverse sequential
hypothesis testing and credit-based connection throt-
tling to quickly detect and quarantine local infected
hosts. These systems are effective only against scan-
ning worms (not topological, or “hit-list” worms), and
rely on the assumption that most scans will result in
non-connections.

Several cooperative, distributed defense systems
have been proposed. DOMINO is an overlay system
for cooperative intrusion detection [26]. The system is
organized in two layers, with a small core of trusted
nodes and a larger collection of nodes connected to
the core. The experimental analysis demonstrates that
a coordinated approach has the potential of providing
early warning for large-scale attacks while reducing
potential false alarms. Zou et al. [27] describes an
architecture and models for an early warning system,
where the participating nodes/routers propagate alarm
reports towards a centralized site for analysis. The
question of how to respond to alerts is not addressed,
and, similar to DOMINO, the use of a centralized col-
lection and analysis facility is weak against worms
attacking the early warning infrastructure. Fully dis-
tributed defense mechanisms, such as [16, 8] may be
more robust against infrastructure attacks, yet all dis-
tributed defense mechanisms that we are aware of are
likely to be too slow for the estimated timescales of
hitlist worms.

3 Network Address Space Randomization

The goal of network address space randomization
(NASR) is to force hosts to change their IP addresses
frequently enough so that the information gathered in
hitlists is rendered stale by the time the hitlist-based
worm is unleashed.

To illustrate the basic idea more formally, consider
an abstract system model, with an address space R =
{1,2,...,n}, a set of hosts H = {hy,..., hy, } Where
m < n, and a function A that maps all hosts A, to
addresses A(hg) = r € R. Assume that at time ¢,,
the attacker can (instantly) generate a hitlist X C R
containing the addresses of hosts that are live and vul-
nerable at that time. If the attack is started at time ¢,
and all hosts in X are still live and vulnerable and have
the same address as at time ¢, then the worm can very

quickly infect | X| hosts.

In a system implementing NASR, consider that at
time ¢, where ¢, < t, < t,, all hosts are assigned a
new address from R. Thus, at the time of the attack ¢,
the probability that a hitlist entry z still corresponds
to a live host is p = m/n and thus the attacker will be
able to infect (m/n)|X| hosts. Besides reducing the
number of successfully infected nodes in the hitlist,
the attack will also result in a fraction 1 — m/n of all
attempts failing (which may be detectable using ex-
isting techniques). In this simple model, the density
m/n of the address space seems to be a crucial factor
in determining the effectiveness of NASR. So far we
have assumed a homogeneous set of nodes, all with the
same vulnerability and probability of getting infected.
If only a subset of the host population is vulnerable to a
certain type of attack, then the effectiveness of NASR
in reducing the fraction of infected hitlist nodes and
the number of failed attempts is proportionally higher.

3.1 Practical considerations

The model we presented illustrates the basic intu-
ition of how NASR can affect a hitlist worm. Mapping
the idea to the reality of existing networks requires us
to look into several practical issues.

First, random assignment of an address from a
global IP address space pool is not practical for several
reasons: (i) it would explode the size of routing tables,
the number of routing updates, and the frequency of
recomputing routes. (ii) it would result in tremendous
administrative overhead for reconfiguring mechanisms
that make address-based decisions, such as those based
on access lists, and (iii) it requires global coordination
for being implemented and is thus less practical. The
difficulty of implementing NASR decreases as we re-
strict its scope to more local regions. Each AS could
implement AS- or prefix-level NASR, but this would
still create administrative difficulties with interior rout-
ing and access lists. It seems that a reasonable strat-
egy would be to provide NASR at the subnet-level, al-
though this does not completely remove the problems
outlined above. For instance, access lists would need
to be reconfigured to operate on DNS names and DNS
would need to be dynamically updated when hosts
change addresses.

Second, some nodes cannot change addresses and
those that can may not be able to do so as frequently
as we would want. The reason for this is that ad-
dresses have first-class transport- and application-level
semantics. For instance, DNS server addresses are
usually hardcoded in system configurations. Even for



DHCP-configured hosts, changing the address of a
DNS server would require synchronizing the lease du-
rations so that the DNS server can change its address
at exactly the same time when all hosts refresh their
DHCP leases. While technically feasible, this seems
too complex to implement and such complexity should
rather be avoided. Similar constraints hold for routers.

Generally, all active TCP connections on a host that
changes its address would be killed, unless connec-
tion migration techniques such as [24, 10] are used.
Such techniques are not widely deployed yet and it is
unrealistic to expect that they will be deployed soon
enough to be usable for the purposes of NASR. For-
tunately, many applications are designed to deal with
occasional connectivity loss by automatically recon-
necting and recovering from failure. For such applica-
tions, we can assume that infrequent address changes
can be tolerated. Examples of these applications are
many P2P clients, like Kazaa and DirectConnect, Win-
dows/SAMBA sharing (when names are used), mes-
sengers, chat clients, etc. However, tolerance does not
always come for free: frequent address changes may
result in churn in DHT-based applications, and would
generally have the side-effect of increasing stale state
in other distributed applications, including P2P index-
ing and Gnutella-like host caches. Finally, some appli-
cations are even less tolerant to failures. For instance,
NFS clients often hang when the server is lost, and
do not transparently re-resolve the NFS server address
from DNS before reconnecting.

There exist ways to make systems more robust to
address changes. Rocks [10] is one solution providing
reliable sockets for protecting applications sensitive to
IP address changes. However, it must be present at
both ends of the connection, so it is not practical for
connections with external third parties. Ina LAN envi-
ronment, a similar solution using a “reverse NAT” box
may be applicable in some cases, with the client host
being oblivious to address changes, and the NAT mid-
dlebox making sure that address changes do not affect
applications. However, this too seems to require an
infrastructure overhaul that we would prefer to avoid.

All these practical constraints suggest that NASR
should be implemented very carefully. A plausible
scenario would involve NSR at the subnet level, and
particularly for client hosts in DHCP-managed address
pools. How such concessions affect NASR, as well as
the rate at which address changes should be made for
NASR to be effective will be explored in more detail
in Sections 4 and 5.

3.2 Implementation

A basic form of address space randomization can
be implemented using minor modifications to a DHCP
server. The server must be configured to expire DHCP
leases at intervals suitable for effective randomization.
The server would normally allow hosts to renew the
lease if hosts request that before the lease expires. To
force addresses changes even if hosts request to re-
new the lease before it expires, a new option, iprand-
interval, is needed. This option specifies how fre-
quently an IP address change must be enforced. The
only essential modification necessary is to have the
DHCP server consider iprand-interval to decide be-
tween renewing the lease and replacing it with a new
one, on a different address.

Several improvements are possible, to make ran-
domization more effective and reduce the risk of ad-
verse effects on applications. We consider two fea-
tures for our implementation. First, we avoid assign-
ing an address to a host that has significant overlap in
services (and potential vulnerabilities) with hosts that
have used the address before. Second, we can try to
avoid forcing address changes for hosts that have ac-
tive connections or a given service profile.

We have implemented an advanced randomization-
enabled DHCP server based on the standard open-
source DHCP implementation. Our extension pro-
vides activity monitoring and service fingerprinting.

Activity monitoring keeps track of open connec-
tions and tries to avoid forcing an address change on
a host whose services could be disrupted. In our pro-
totype, we only consider long-lived TCP connections
(that could be, for example, FTP downloads). More
complicated policies can be implemented, but are out-
side the scope of our proof-of-concept implementa-
tion.

Service fingerprinting examines traffic on the net-
work and attempts to identify what services are run-
ning on each host. For instance, a TCP connection to
port 80 suggests that the host is running a Web server.
During address allocation, the list of running services
is considered so as not to perform randomization be-
tween hosts running the same services. Port number
and other activity may allow guessing the operating
system of a host. For instance, port 445 is an indication
that a host might be a Windows platform. Randomiza-
tion between hosts with different operating systems,
e.g., between a Windows and a Linux platform seems
to be a good strategy. Although our implementation
of these features is rudimentary, there are many doc-
umented techniques for fingerprinting, some of which



are available as part of open-source tools[7, 6, 5, 4].

4 Measurements

To explore the design space of network address
space randomization we first need to consider some
basic hitlist characteristics, such as the speed at which
a hitlist can be constructed, the rate at which ad-
dresses already change (without any form of random-
ization), and how address space is allocated and uti-
lized. We perform measurements on the Internet to
obtain a clearer picture of these characteristics.

4.1 Random scanning

We determine the effectiveness of random scanning
for building hitlists. We first generate a list of all /16
prefixes that have a valid entry with the whoi s ser-
vice, in order to increase scan success rates and avoid
reserved address space. We then probe random tar-
gets within those prefixes using ICMP ECHO mes-
sages. Using this approach, we generated a hitlist of
20,000 addresses. Given this hitlist, we probe each
target in the hitlist once every hour for a period of
two weeks. Every probe consists of four ICMP ECHO
messages spaced out over the one-hour run in order
to reduce the probability of accidentally declaring an
entry stale because of short-term congestion or con-
nectivity problems. Note that these measurements do
not give us exactly the probability of the worm suc-
cessfully infecting the target host, but only a rough es-
timate. Although we were tempted to perform more
insightful reconnaissance probes on the nodes in the
hitlist, this would result in a much higher cost in terms
of traffic and a high risk of causing (false) alarms at
the target networks. The techniques would most likely
involve full port scans, application-level fingerprinting
and more frequent probes to perform i pi d-based de-
tection of host changes.

The results of the ICMP ECHO experiment are
shown in Figure 2. We observe that the hitlist decays
rapidly during the first day, and continues to decay, al-
beit very slowly, over the rest of the two-week run.
The number of reachable nodes tends to vary during
the time of day, apparently peaking on business hours
in the US with minor peaks that may coincide with
working hours elsewhere in the world. Overall, the
decay of the hitlist slows down over time, reaching an
almost stable level of 75% of hitlist nodes reachable.

4.2 Passive P2P snooping

In the Gnutella P2P network, node addresses are
carried in QueryHit and Pong messages. A Gnutella
client can harvest thousands of addresses without per-
forming any atypical operations. In our experiments, a
24-hour period sufficed for gathering 200K unique IP
addresses, as shown in Figure 5. Intensive searches
and using other, more popular, P2P networks will
probably result in higher yield.

Most P2P nodes are short-lived. Addresses har-
vested through P2P networks become unavailable very
quickly. Figure 3 shows the decay of the hitlist as
a function of elapsed time. Note that in this exper-
iment we only check whether the nodes respond to
ICMP ECHO probes, not whether the Gnutella client
is still up and running. Thus, it is possible that the IP
address is not used by the same host recorded in the
hitlist. This may or may not be important for the at-
tacker, depending on how much the attack depends on
software versions and whether version information has
been used in constructing the hitlist.

4.3 Search-engine harvesting

Querying a popular search engine for the or similar
keywords returns hundreds of millions of results. Re-
trieving a thousand results gave 612 unique alive hosts
and 30 dead hosts. Most search engines restrict the
number of results that can be retrieved, but the attacker
can use multiple keywords, either randomly generated
or taken from a dictionary.

The hosts that immediately appear as dead are a re-
sult of the frequency of the indexing by the search en-
gine. It plays a role in the speed of harvesting the ad-
dresses and must be considered for the decay if the
addresses are not checked.

Figure 4 shows the decay of the hitlist created using
the search engine results. We observe that, compared
to the other address sources, the search engine results
are very stable. This was expected, since web servers
have to be online and use stable addresses. It does
not mean, however, that addresses retrieved through
search engines are better suited for attackers. Depend-
ing on the vulnerability at hand, unprotected, client
PCs, such as those returned by crawling peer-to-peer
networks may be preferred.

A natural question to ask is whether such suspicious
behavior can be detected easily by the search engines.
This seems unlikely: an attacker motivated enough to
unleash a worm is likely to also be capable of setting
up a botnet (a set of machines under the control of the
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Figure 2. Decay of addresses
harvested using random scan-
ning

a node.

attacker) and issuing multiple queries from different
locations in a way that can make detection hard while
maximizing the aggregate rate of retrieving hosts ad-
dresses.
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Figure 5. Number of distinct addresses har-
vested by monitoring Gnutella traffic as a
function of time and number of monitoring
nodes.

4.4 Subnet address space utilization

The feasibility and effectiveness of network address
space randomization depend on how many unused ad-
dresses there are in NASR-enabled subnets. Perform-
ing randomization on a subnet with many unused ad-
dresses will result in the worm failing to connect to a
hitlist target with higher probability than on a highly
utilized subnet. Such failures could expose the worm
as they could be picked up by scan-detection mech-
anisms. If the subnet is highly utilized, and if we

Figure 3. Decay of addresses
harvested by monitoring peer-
to-peer traffic routed through

time (days)

time (days)

Figure 4. Decay of addresses
harvested by querying a pop-
ular web search engine.

assume a homogeneous network with identical hosts
(e.g., running the same services) then the worm is
more likely to succeed in infecting a host, even if
the original host recorded in the hitlist has actually
changed its address. Finally, in the extreme (and most
likely rare) case of a subnet that is always fully uti-
lized, then there will never be a free slot to change a
node’s address.

We attempt to get an estimate of typical subnet uti-
lization levels. Because of the high scanning activity,
we cannot perform this experiment on a global scale
without tripping a large number of IDS alerts. We
therefore opted for scanning five /16 prefixes that be-
long to FORTH, the University of Crete, and a large
ISP, after first explaining the nature of the experiment
and obtaining permission by the administrators of the
networks. We performed hourly scans on all prefixes
using 1 CMP ECHO messages over a period of one
month. For simplicity, we assume that all prefixes are
subnetted in /24°s.

A summary of the results is shown in Figure 7. We
see that many subnets were completely dark with no
hosts at all (not even a router). Nearly 30% of the
subnets in two ISP prefixes were totally empty, while
for the FORTH and UoC the percentage reaches 70%.
This means that swapping subnets would likely be an
effective NASR policy, but unfortunately it is not prac-
tical, as discussed previously. We also see that 95% of
these subnets have less than 50% utilization and the
number of maximum alive hosts observed does not ex-
ceed one hundred. If subnet utilization at the global
level are similar to what we see in our limited exper-
iment, NASR at the level of /24 subnets is likely to
be effective, as there is sufficient room to move hosts
around, reducing the effectiveness of the worm and
causing it to make failed connections.
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4.5 Host uptime measurements

Aiming at better understanding the behavior of the
hosts, we measured the maximum uptime for the hosts
that were at least one time alive. These measure-
ments will tell us whether hosts disconnect frequently
enough so that their address can be changed between
disconnects, and not while they are actively using the
network.

The cumulative distribution function is shown in
Figure 6. The liveness of the hosts was monitored
for a full week by sending pi ng messages every hour.
Almost 60% of the hosts inside FORTH were always
up, which seems reasonable as it is an environment
consisting mostly of workstations. In more dynamic
environments, like the ISP and University of Crete
networks only 20-30% of the hosts were consistently
alive, while nearly 40% of the hosts were alive for
maximum 10 hours. Although such dynamic environ-
ments perform some form of natural randomization on
their address space, mostly due to DHCP, most of the
DHCP servers are configured to maintain leases for
machines connecting to the network. The usual sce-
nario is that a DHCP server is giving the same IP to a
specific host (by caching its Ethernet address). Typi-
cally, a lease expires in 15 days period, so hosts that
do not refresh the lease before it expires (e.g., because
they are not connected) would obtain a new address.
Although we do not have measurements on how often
this happens, it seems likely that this minor, slow form
of randomization is unlikely to be effective by itself.

5 Simulation study

Itis infeasible to run experiments on the scale of the
global Internet. To evaluate the effectiveness of our
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Figure 7. Subnet address space utilization

design, we simulated a small-scale (compared to the
Internet) network of 1,000,000 hosts, each of which
could be a potential target of worms.

Because of the variety of operating systems used
and services provided, we assume that a fraction of
hosts v is vulnerable to the worm. For simplicity, we
ignore the details of the network topology, including
the effect of end-to-end delays and traffic generated by
the worm outbreak. We simply consider a flat topology
of routers, each serving a subnet of end-hosts.

A fraction of addresses is allocated in each sub-
net, which affects the probability of successful scan
attempts within the subnet. This probability is an im-
portant parameter in the case where a host in the hitlist
has changed its address, because it determines if an-
other live host would be available at the same address.
A separate parameter is used for random scanning, re-
flecting the fraction of the overall address space that is
completely unused.

The hitlist is generated at configurable rates, and we
assume that the worm starts spreading immediately af-
ter finishing with generating the hitlist. Because the
early hitlist entries are more likely to have become
stale between their discovery and the start of the at-
tack, the worm starts attacking the freshest addresses
in the hitlist first. For simplicity, we ignore the details
of how the hitlist is distributed and encoded in the pay-
load of the worm: we assume that every worm instance
can obtain the next available entry at zero cost. After
finishing with the hitlist, we assume that the worm will
continue trying to infect hosts using random scanning.
5.1 Impact of NASR

In the first experiment, we simulate work outbreaks
with different parameters, and measure the worm
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spread time, expressed in terms of the time required
for the worm to infect 90% of the vulnerable hosts.
We compare the impact of network address space ran-
domization, varying how fast the hitlist is generated
and how fast the host addresses are changed. The frac-
tion of vulnerable hosts at 20%, the internal scan suc-
cess probability is 0.3 (based on the subnet utilization
measurements of Section 4.4) and the random scan-
ning success probability is 0.05 (based on the measure-
ments presented in Section 4.1).

The results are shown in Figure 8. We observe
that NASR achieves the goal of increasing the worm
spread time, from 5 minutes when no NASR is used to
between 24 and 32 minutes when hosts change their
addresses very frequently. As expected, defending
against hitlists that are generated very fast requires
more frequent address changes; in general, the mean
time between address changes needs to be 3-5 times
less than the time needed to generate the hitlist for the

lations

approach to reach around 80% of its maximum effec-
tiveness. More frequent address changes give dimin-
ishing returns. Considering the observations of Sec-
tion 4, it appears that daily address changes could sig-
nificantly slow down a worm whose hitlist is generated
by passively listening to a P2P network.

Note that when using NASR, the hitlist worm is
not completely reduced to a random-scanning worm:
knowledge of subnets that have at least one host avail-
able already gives the worm some advantage over a
completely oblivious, random-scanning worm. In this
experiment, such a worm would require 2 hours to
infect the whole network. This is the result of per-
forming subnet-level instead of global-level NASR,
as global-level NASR would indeed reduce the hitlist
worm to random-scanning. We must also note that the
spread times reported depend on scanning frequency,
although the relative improvement when using NASR
is constant.



We also simulated NASR with varying the number
of vulnerable hosts, and the average subnet utilization.
The impact of NASR is greater in terms of slowing
down the infection for smaller vulnerable populations.
This is expected, as in such cases the failure rate for
stale entries is higher compared to a network where
every available host is vulnerable. The results for the
impact of NASR as a function of subnet utilization are
similar. Higher utilization means a higher success rate
for stale entries. However, NASR remains effective
even for 90% subnet utilization.

5.2 Partial deployment scenario

We have so far assumed that NASR is globally de-
ployed. In reality, it is more likely that only a fraction
of subnets will employ the mechanism, such as dy-
namic address pools. As we are not aware of any stud-
ies estimating the fraction of DHCP pools, we mea-
sure the effectiveness of NASR for different values for
the fraction of NASR-enabled subnets. The results are
shown in Figure 9. We observe that NASR continues
to be effective in slowing down the worm, even when
deployed in 20% or 40% of the network. The worm
will still infect the non-NASR subnets quite rapidly
with a slowdown in the order of 50%, caused by the
worm failing to infect NASR subnets. In other words,
NASR has a milder but still positive impact on non-
NASR hosts. However, the worm will have to resort to
random scanning after exhausting the hitlist, and it will
take significantly more time to infect NASR compared
to non-NASR subnets. This provides a clear incentive
for administrators to deploy NASR, as it may provide
them the critical amount of time needed to react to a
worm outbreak.

5.3 Interaction with scan-blocking mechanisms

Hitlist worms are generally immune to scan-
blocking mechanisms such as [23]. Even for the nat-
ural decay rates measured in Section 4, such worms
would still be under the detection threshold most of
the time. Randomization, however, will cause many
infection attempts to fail, as hosts change addresses
and their previous addresses are either unused or used
by a different host that may or may not run the same
service, and thus may or may not be vulnerable. To
determine the interaction between NASR and scan-
blocking mechanism we simulate worm outbreaks in
a network where both NASR and scan-blocking are
deployed. As scan-blocking contains the outbreak,
in this experiment we measure the maximum frac-
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tion of hosts that are infected despite NASR and scan-
blocking. The results are shown in Figure 10. We
observe that if NASR is performed according to the
rule-of-thumb observation made previously (e.g., with
address changes at a rate that is 3-5x faster than hitlist
generation), the infection can be contained to under
15% of the vulnerable population.

6 Discussion

The experiments presented in Sections 4 and 5 sug-
gest that network address space randomization is likely
to be useful. However, these results should only be
treated as preliminary, as there are several issues that
need to be examined more closely before reaching any
definite conclusions.

First, the interaction between NASR and other de-
fense mechanisms needs to be studied in more depth.
Our simulation results show that NASR enables scan-
blocking mechanisms to contain the worm to under
15% infection. However, scan-blocking is not entirely
foolproof, at least in its current form. For example, a
list of known repliers can be used to defeat the failed-
connection test used by these mechanisms, by padding
infection attempts with successful probes to the known
repliers. Whether it is possible to design better mech-
anisms for detecting and containing scanning worms
is thus still an open question. Therefore, we should
also consider other possibilities, including distributed
detection mechanisms. As NASR is likely to at least
slow down worms, it may provide the critical amount
of time needed for distributed detectors such as [8, 26]
to kick in. Determining whether this is indeed a possi-
bility requires further experimentation and analysis.

Second, we have so far focused entirely on IP-level
address randomization, as IP hitlists seem to be the
most dangerous in the current Internet. For instance,
we have only considered IPv4 as deployed today. In
an IPv6 Internet, the address space is so much bigger
that randomization could be even more effective. We
also assume that worms that use higher-level address-
ing schemes, such as DNS or DHT id’s, will suffer
the additional lookup cost and risk of being detected.
With some simplifications, we can see how this is true
for the case of DNS. IP-level NASR would be ren-
dered useless if a DNS name hitlist is used, for ex-
ample, for attacking Web servers, for which the DNS
name will have to be updated under IP randomization
so that www.site.com always points to the correct IP.
We measured the fully qualified domain name (FQDN)
for several entries from search engine results. The
average length was 16 bytes. Servers that hold web



content tend to have shorter, more memorable names,
S0 we expect that this is a conservative estimate. We
measured a 46% compression ratio for these strings,
and therefore on average each entry will take up 7.5
bytes in the hitlist. 1P addresses take up 4 bytes, so
storing DNS names causes almost a doubling of the
hitlist size. The DNS lookups required for resolving
the names also introduce latency. Resolving the names
used in the previous paragraph results in an average la-
tency of 1 second. It is possible to pipeline these re-
quests, but massive DNS lookups may raise suspicion.
While no such mechanism is in place now, it could be
deployed on DNS servers. Thus, while the worm is
spread through the entire Internet, in practice, every
infection has to be processed by the DNS system, in-
volving orders of magnitude less hosts.

Third, we have not considered how worm creators
would react to widespread deployment of our mecha-
nism. One option would be for the worm to perform
a second round of (stealthy) probing, and retain only
entries that seem to be stable over time. If our mech-
anism is partially deployed, then the worm could in-
fect the non-NASR part of the Internet, without be-
ing throttled by stale entries or generating too many
failed connections. Interestingly, in this scenario all
networks that employ NASR will be worm-free, unless
the worm switches to random scanning after finishing
with the hitlist. If this happens, then NASR networks
will still get infected much later than the nodes in the
hitlist. Although we are not aware of any other possi-
ble reactions to the deployment of our mechanism, we
cannot safely dismiss the possibility that worm cre-
ators could come up with other measures to counter
NASR. Thus, this issue deserves further thought and
analysis.

7 Summary and concluding remarks

We have explored the design and effectiveness of
network address space randomization (NASR), a tech-
nique that hardens IP networks against hitlist worms.
The idea behind NASR is to force network nodes
to periodically change their network address in order
to increase the staleness of information contained in
hitlists. The approach is appealing in many ways.
First, it slows down hitlist worms, and forces them to
exhibit scan-like behavior that may be detectable using
other mechanisms, where available. Second, it is dif-
ferent in nature from most previously proposed worm
defenses, as it is neither a detection mechanism that
needs to analyze network activity, nor an end-system
enhancement. This makes the approach very easy to
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implement and deploy at low operational cost.

We have discussed various constraints that limit the
applicability of the proposed approach, such as ser-
vices that use hardwired addresses (such as routers,
DNS servers, etc.) and those that cannot tolerate ad-
dress changes, or suffer performance-wise when ad-
dresses change frequently. It appears that network seg-
ments that already perform dynamic address alloca-
tion, such as DHCP pools for broadband connections,
laptop subnets and wireless networks could easily im-
plement the mechanism without significantly impair-
ing end host functionality.

To explore the design space of NASR we first con-
sidered some basic hitlist characteristics, such as the
speed at which a hitlist can be constructed, the natural
rate of hitlists without NASR, and how address space
is allocated and utilized. We performed measurements
on the Internet to obtain a clearer picture of these char-
acteristics. The measurements show that hitlists built
by ICMP ECHO scans are relatively robust, with the
fraction of entries that are stale at around 25%, two
weeks after hitlist generation. Harvesting search en-
gines results in very low decay rates but are typically
harder to build without raising suspicions. Passively
snooping on a P2P network can very quickly popu-
late a hitlist with hundreds of thousands of hosts, with-
out generating any suspicious activity. However, P2P
hitlists also decay faster.

Additional measurements show that most subnets
tend to be utilized up to 50%, while 65%-95% of the
subnets are less than 12% full. This observation sug-
gests that hitlist worms will result in failed connections
and timeouts when hitting a stale entry. Further mea-
surements show that the natural uptime of hosts (e.g.,
without NASR) is around 5 days for between 20% and
60% of the hosts, while 20%-40% of all hosts have an
uptime of less than 12 hours. Although the method-
ology for these measurements is conservative, the re-
sults indicate that if daily address changes are good
enough to slow down or contain a worm, the cost of
NASR is almost free for 20%-40% of the hosts, but
may have some implications for some of the remain-
ing 20%-60% of the hosts.

Finally, our preliminary simulation results suggest
that network address space NASR slows down the
spread of the worms. We show that NASR forces
hitlist worms to exhibit scanning-like properties, ex-
posing them to previously proposed scan-detection
mechanisms, and thus making the worm easier to con-
tain.
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